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Abstract - Standards for radar cross section measure- 
ments are being developed cooperatively by NIST and DoD 
scientists. Three technical areas were defined as the foun- 
dation of such an effort: (1) monostatic single-channel 
calibration, (2) full polarimetric calibration using a scat- 
tering matrix formalism, and ( 3 )  analysis of radar cross 
section calibration and measurement uncertainty. In this 
paper I review the results of assessment of calibration data 
accuracy using a set of cylinders as artifact standards, ex- 
amine the theory of polarimetric calibrations, and discuss 
essential areas of radar cross section uncertainty analysis. 
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INTRODUCTION 

The need for standards in radar cross section (RCS) 
measurements has been noted in 1965 [ 11. The absence of 
uniform calibration and measurement procedures makes it 
difficult to compare RCS data objectively. The absence of 
a well-defined uncertainty procedure makes evaluation of 
the quality of RCS data difficult or impossible. 

During the last five years, scientists at the National 
Institute of Standards and Technology (NIST) and DoD's 
Radar Cross Section Measurement Working Group (RC- 
SMWG) have been collaborating to improve RCS measure- 
ments. A dual calibration technique using cylinders [2] has 
been proposed to provide a measure of calibration unifor- 
mity throughout the RCS community. At the same time, 
this technique also gives a measure of the magnitude of er- 
ror in a monostatic single-channel calibration. Similarly, 
a modified analysis of the full polarimetric scattering ma- 
trix formalism, as applied to dihedrals, has been proposed 
[ 3  - 51 to improve the determination of channel cross- 
polarization ratios and to provide uncertainty estimates. 
Considerable research has been undertaken to provide a 
foundation and a general framework for RCS uncertainty 
analysis [7,8], but this work is still ongoing. I continue 
the discussion of RCS uncertainty analyses reported previ- 
ously. In particular, I derive theoretical expressions for the 
upper-bound of uncertainty in the discrepancy obtained in 
the dual cylinder calibration technique. 

CALIBRATION OF MONOSTATIC RADARS 

Measurements on a set of precision cylinders mounted 
on their flat surfaces, shown in Figure 1 ,  have been made at 
many RCS measurement ranges. The purpose is to assess 
RCS calibration accuracy within and across laboratories. 

The RCS of a cylinder (for a fixed polarization and 
orientation) can be obtained by comparing the scattering 
relative to a known scatterer using the expression 

where the measured electric fields E(rn) may have been de- 
rived by incorporating background subtraction techniques 
[2]. Here 0;') is the computed cross section of cylinder j, 
and ai,j is the measured cross section of cylinder i, when 
cylinder j is used to calibrate the measurement system. 

Figure 1. Standard cylinder set (shown with identification 
numbers) for monostatic RCS calibrations. For details, see 
[2] and [9]. (Courtesy of B. Kent, AFRL, WPAFB). 
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Two related measures of error are suggested [9]. First, 
we can state the discrepancy between measured and com- 
puted (assumed exact) u, or, second, we can examine 
the interlaboratory variation using the normalized electric 
fields, 

Ac~i,j = 10 l ~ g ( u i , j / u ~ ~ ) ) ,  ( 2 4  
and 

where a laboratory is identified by the superscript 1. The 
second measure eliminates the need to know the cross sec- 
tions or to deal with errors in the computed cross sections. 

Figure 2 shows results of comparisons between cylin- 
ders as a function of frequency from 2 to 18 GHz obtained 
using Equations (1) and (2a) for the ‘U’U polarization. Over- 
all, the results are very encouraging with discrepancies no 
greater than 5 0 . 4  dB for f > 3.5 GHz. As expected the 
discrepancy at lower frequencies are greater than at higher 
frequencies, but not outside acceptable bounds. Similar 
results were obtained for the hh polarization. We must 
recognize here that discrepancy is not uncertainty; the un- 
certainty at each point in Figure 2 needs to be determined 
by independent procedures. 
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Figure 2. A monostatic RCS repeatability study for wz’ po- 
larization. The discrepancies between the measured and 
computed RCS of three 450-cylinder targets (see Figure 1). 
A single 900-cylinder was used as the calibration artifact. 
(Courtesy of B. Kent, AFRL, WPAFB). 

POLARIMETRIC CALIBRATION OF 
MONOSTATIC RADARS 

The RCSMWG reported large unacceptable cross- 
polarimetric channel isolations when they implemented 
one of several similar but distinct techniques reported in the 
literature [4,5]. Most calibration procedures recommend 

(1) a dihedral as the primary calibration target, and (2) a 
two-point calibration technique. Other known calibration 
techniques are essentially variants of the basic procedure 
using dihedrals. In this section, I propose a continually 
rotating dihedral as a calibration device, as shown in Fig- 
ure 3. As will be seen below, this calibration technique 
offers many improvements in calibration data diagnostics 
and analysis, and makes uncertainty analysis tractable. 

When we calibrate a polarimetric radar system, we de- 
termine its transmitting and receiving characteristics using 
targets with known scattering matrices. In general, the 
measured signal M scattered from a target is given by 

(3) 
where 0 is the element-by-element Hadamard product 
[IO], R and T are the receiving and transmitting character- 
istics of the radar system, A is the scattering matrix of the 
target, and K: is a complex constant containing phase and 
distance information. The subscripts h and w refer to hori- 
zontal and vertical polarizations of the electric field vector 
of the signal; the right subscript indicates the polariza- 
tion of an incoming signal, and the left subscript gives the 
polarization of the radar channel responding to the incorn- 
ing signal. The relative amplifications Yhv = ghh/ghv,  

Yvh  = ghh/gvh,  and 7vv = ghh/gvv,  defined in terms of 
amplifications gpq ,  p ,  q = h or ‘U that may be introduced 
before the received signal is recorded, can be determined 
as part of the calibration procedure. If A is known, we can 
perform measurements to determine R and T uniquely; 
that is, we can calibrate the radar system. 

An important data integrity check follows from Equa- 
tion ( 3 ) .  The determinant of the incoming signal matrix 
M satisfies the relationship IM j = iC2 iRJ id1 [TI. If IAJ is 
independent of target orientation, JM is also independent 
of target orientation. However, if ghhgv.1, - ghvgt,h # 0 ,  
then [MI will not be constant under the same conditions, 
but the modified determinant €h;LhhMvt ,  -h;Lh7,h;L7,h will 
be constant if we choose 

A critical examination of published procedures leads 
to the understanding that new diagnostic and analysis tools 
are needed for better polarimetric RCS calibrations. We 
need to (1) introduce special diagnostic techniques to 
isolate and remove unwanted signals from the calibration 
data, (2) verify the consistency between the polarimetric 
calibration dataset and the system scattering model, (3) 
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of uncertainties havc been assigned hypothetical values, 
and the less important entries have been assigned 0.0 dB 
for illustration only. Although the sources of uncertain- 
ties have been presented in various classification schemes 
17.81, a complete theoretical treatment supported by a com- 
prehesive set of measurements to determine uncertainties 
have not been developed yet. The complexity of the mea- 
surement system and the associated procedures make a full 
uncertainty analysis difficult and expensive. 

Table 1. 
RCS Calibration Target Uncertainties 

For a Fixed Frequency and Orientation 
(hypothetical estimates in  decibels) 

Average Illumination 
Background - Target 

Cross Polarization 
Drift 
Frequency 
Integration 
I-Q Imbalance 
Near Field 
Noise - Background 
Nonlinearity 
Range 
Target Orientation 
Reference RCS 

Interaction 

0.7 

0.0 
0.0 
0.3 
0.0 
0.0 
0.0 
0.0 
0.5 
0.3 
0.0 
0.0 
0.0 
- 

Combined Uncertainty (RSS) 1 .O 

We can easily exhibit the presence oferron in Equation 
( I )  explicitly. If E:'. i = 1 , 2  i s  the ,scaftrrr~d mono.+ 
f n t i r .  jield dut' to r i  plnne uraiie illurnrncifion, then by 
definition 

where cf, are the computed radar cross sections of the 
targets. W e  assuri/t' f o r  now th.at the computations 
yielded theordiccdlg correct wsults. The measured elec- 
tric field is 

J!? = Eo + A E ,  (12) 

where A E  is the total measured error field. We define 
the finctioirul error fields for the target and calibration 
artifacts as 

where AEi ,  i = 1 , 2  are the sum of the received scattered 
error fields. These error fields are pr.iniarily due to the 
scattering of the bistatic illuniination of the target m d  
to the b%stat,ic response of the target to the plane waue 
illumination. In general, all other sources of uncertainty 

listed in Table 1 contribute to the error fields. Thus, 

A E  = AEbL + AEtml + AE, + AE,, -F . . . , (13) 

where the subscripts denote the error s i p l a ~ s  due to 
bistatic, target-mount interaction, orientation and noise, re- 
spectively. It is assumed that system drift and nonlinearity 
has been appropriately corrected for. If Au, is the mea- 
surement error in cry,  then the discreparicy P between the 
measured and computed (error-free) radar cross sections is 
given by the discrepancy equation 

I I:! 

For lA, I < 1 and \All < 1, thefirst-or~crapproximation 
to Equation ( 14a) is 

which implies that all the uncertainties in the two measure- 
ments add [6]. This method of combination of uncertain- 
ties have been presented in [7], where the root-sum-square 
(RSS) was chosen to determine the overall measurement 
uncertainty [6]. Alternatively, we can choose to combine 
all uncertainties in a simple sum to obtain upper bound 
uncertainties [6]. 

The contours of measurement discrepancies defined in 
Equation (14) are plotted in Figure 4. From Equation (14a) 
we observe that a parameter useful for characterization of 
RCS measurement ranges for a particular combination of 
calibration and test targets is the the complex fractional 
error f ie ld  ratio 

Clearly, if ij:!~ = 1, then A02 = 0, which demonstrates 
that measurement discrepancies are a consequence of 
the difference in the fractional error field scattering 
characteristics of the calibration and unknown targets 
and their interactions with the environment. Such 
differences could be approximated by numerical mod- 
eling, and could be used in the prediction of error 
bounds for RCS measurements. We observe that for 
repeated measurements made on the same calibration arti- 
fact, ,&I provides a measure of the repeatability of a mea- 
surement sequence. 
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simplzfy the data-analysis technique, and (4) specif9 the 
uncertainty in the calibration procedure. 

These objectives can be achieved by a polarimetric 
calibration procedure where we use a rotating dihedral as 
the primary target to obtain a complete polarimetric dataset 
as the dihedral rotates through a full 360". Since the Iugh- 
frequency scattering matrix A of a dihedral (neglecting 
diffraction) is given by 

(5) 
-cos28 sin28 

where 8 is the angle of rotation around the line of sight 
( z  axis), special diagnostic explorations of the dataset to 
detect system problems, based on the symmetries of the di- 
hedral, become straightforward. The calibration equatiqn 
now becomes, assuming the reciprocity condition R = T, 

Figure 3. The standard dihedral used in monostatic po- 
larimetric RCS calibrations. The z axis of the rotating 
coordinate system is along the line of sight to the radar. 

Once the Fourier coefficients are obtained, we can 
solve for all polarimetric radar system parameters. Thus, 

Eh sin28 , yield E h  and e,  such that lEhl < 1 and I E , ~  < 1. Then, if 
g h h ~ i h ~ ~ d  ( t, 1 ) ( sin28 cos 2 8 )  ( E h  1 ) 

The matrix elements in Equation (6) have the general 
form, with p ,  q = h or U ,  

M p q  = c,, COS 28 + s,, sin 28, (7) 

These components are not independent, since we must sat- 
isfy the conditions that [MI and the modified determinant 
E M h h M v v  - MhvJZ;i& be independent of e. This will 
be true only if the 8 Fourier coefficients in Equation (7) 
satisfy the nonlinear constraint 

We can show that each side of Equation (8) is really E 

defined in Equation (4). 

K: and K d  have been determined independently, 

The uncertainties in the Fourier coefficients C and S in 
Equation (7) can be obtained by examining the residuals of 
the Fourier analysis of the data and the lack of symmetries 
that the data exhibit. Details of this examination will not 
be presented here. In Equations (9) and ( 1  0)  all the system 
parameters E and b are obtained in terms of the coefficients 
C and S in Equation (7). Consequently, the uncertainties 
in S and C can be propagated to obtain the uncertainties 
in E and 6 using basic rules of calculus [6]. Repeated mea- 
surements on different-sized dihedrals should provide the 
same system parameters within the stated uncertainties, 
thus providing us with a convenient consistency check on 
our results. 

ERRORS AND UNCERTAINTIES IN RADAR 
CROSS SECTION MEASUREMENTS 

Table 1 shows known sources of uncertainty [71 inRCS 
measurements for a set of radar system parameters as con- 
ceptualized at NIST; some of the most important sources 
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-90". Similar expressions can be easily denived if a dif- 
ferent assumption is made. 

A1 

Figure 4. The decibel contours of discrepancy between 
measured and computed RCS as a function of fractional 
error fields. Contour levels in decibels are indicated on top 
and right edges of the plot. The upper and lower bounds of 
uncertainty as functions of the uncertainties 6Al and bA2 
are also indicated. 

To derive expressions for the uncertainty in the mea- 
sured radar cross section discrepancy, as defined in Equa- 
tion (14a), we assume that best estimates for A:, i = l ,  2 
and their corresponding uncertainties 6Ai have been deter- 
mined successfully using fully documented theoretical, ex- 
perimental, a n d  or computational techniqes. Then Equa- 
tion (14a) provides the best estimate for the discrepancy 

We conclude with an important observation: the un- 
certainty in the discrepancy i s  not,  in general, the 
same as the uncertainty in the measured radar cross 
section. The relationship between these uncertainties is 
given by [61 

(18) 
6e 60 6gC - _  - -+-,  
e (T oC 

where the last term is the fractional uncertainty in the com- 
puted radar cross section oc. 

A n  example. We will now construct a simple example to 
demonstrate these ideas. Assume that the only error field 
in a RCS measurement system is the background signal. 
Then, in general, 

where E ,  Eo, and AEb are the measured, ideal, and back- 
ground signals, as defined previously. After background 
subtraction, the measured RCS of the target cylinder is 
(see Equation (1)) 

where pr imes  indicate the distinct times (here unspecified) 
the measurements were taken. 

Let us assume that we have determined 

( 1 )  that the best estimate of the residual- background 
signal after background subtraction is €$, (indicating 
some systematic background effect), and 

2 (2) that the uncertainty in background measurements is 

and, finally, let us assume 

6Eb, 
eo SE 2 '  (16) 

and the uncertainty in the best estimate of the discrepancy is 
determined by ordinary rules of propagation of uncertain- 
ties [6] for functions of two independent variables. How- 
ever, it is very easy to write down the uncertainty bounds 
on the discrepancy in terms of the uncertainties 6Ai in Ai, 

Figure 4 shows the uncertainty in the measured discrep- 
ancy. We assume here that all quantities are either positive 
and real, or that the complex phases are between 90" and 

(3) that the ideal scattered field Eo is known exactly, or 
that the uncertainty SEo is negligible. 

Then, the best estimate of the discrepancy, according 
to Equation (16), is given by [6] 

Since the uncertainty in our measured signal after 
background subtraction is 26Eb [6], the uncertainty bounds 
defined in Equation (1  7) are given by 
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SUMMARY 

Equations (1 6) and ( 1  7) demonstrate how the uncer- 
tainty in the discrepancy between measured and exact the- 
oretical radar cross sections can be determined. To imple- 
ment these expressions, we need 

to determine the best estimate of the scattered electric 
field Eo due to a plane wave illumination, 

to develop specific procedures to obtain best estimates 
of the various error signals present on an RCS mea- 
surement range, and 

to determine the uncertainties in the quantities ob- 
tained in steps (1 )  and (2). 

One of the major goals of the national radar cross sec- 
tion standards and certification program, developed jointly 
by scientists from DoD, NIST, and industry, is to imple- 
ment procedures that will determine the bounds specified 
in Equation (1 7). These procedures will be reported in the 
future. 
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